Sequential Improvement of Grasp based on Sensitivity Analysis

Christoforos I. Mavrogiannis, Charalampos P. Bechlioulis and Kostas J. Kyriakopoulos
School of Mechanical Engineering, National Technical University of Athens, Greece

Karlsruhe, Germany, May 2013
Outline

- Introduction
- Problem Formulation
- The Sequential Grasp Improvement (SGI) Algorithm
- Simulation Results
- Discussion
Motivation

- Complex human-like multifingered robot hands.
- Demanding applications (e.g. household/medical/space robotics) → Demanding Grasp Specifications (e.g. task specificity, precision, safety, power saving)
- Constraints (hand’s structure, object geometry, surrounding Environment etc.)

Grasping can become a multiparametric problem.

Sensitivity Analysis: “how sensitive is the state of a system to perturbations of its parameters”.

Algorithm that determines the parameters’ perturbations that improve the grasp.

C. Mavrogiannis, C. Bechlioulis and K. Kyriakopoulos
Our Approach: Post-Optimal Grasp Improvement

Given:
- an initial *random force closure grasp* with a *locally optimal* force distribution
- *local* knowledge of the grasped object’s surface geometry around the contacts

we address the problem of *on-line improving the grasp*.

This is achieved by *sequentially perturbing*:
- the contact points
- the wrist’s position/orientation towards the directions of the desired Grasp Improvement.

Sequential optimal states s^ wrt the function $z(f,p)$*
Outline

- Introduction
- **Problem Formulation**
 - The Sequential Grasp Improvement (SGI) Algorithm
- Simulation Results
- Discussion
Modeling

- **Multifingered Robot Hand**
 - n_c fingers
 - n_q joints
 - Contact Force distribution f
 - Joint displacements q

- **Object**
 - Object center of mass
 - Weight
 - (Local) Surface Geometry information around the contacts

- **Contacts**
 - Friction coefficient μ
 - Hard Finger Model

Infinite ways to grasp it

C. Mavrogiannis, C. Bechlioulis and K. Kyriakopoulos
Aspects of Grasp Quality

- **Force Closure**: Fundamental Grasp Property (object equilibrium & friction cone inequalities) → “Stable Grasp”

- **Contact Force Minimization**: e.g. Norm of the Normal Contact Force Components:
 \[F(f) = \sqrt{\sum_{i=1}^{n_c} f_{ni}^2} \]

- **Singularity Avoidance**: e.g. Volume of the Manipulability Measure
 \[M(q) = \sqrt{\text{det}(J(q)J(q)^T)} \]

- **Mechanical Joint Constraints**: e.g. Distance from Mechanical Joint Limits
 \[Q(q) = \sum_{i=1}^{n_q} \left(\frac{q_i - q_{0i}}{q_{\text{max}_i} - q_{\text{min}_i}} \right)^2 \]

- **Adopted Combined Quality Function**:
 \[z = w_1 \cdot F(f) + w_2 \cdot \frac{1}{M(q)} + w_3 \cdot Q(q) \]
Grasping Force Optimization as a general NLP

NLP for deriving a minimal force distribution that guarantees the **Force Closure** sufficient conditions:

\[
f^* = \arg\min_f F(f) := \sqrt{\sum_{i=1}^{n_c} f_n^2}
\]

s.t.

\[
h(f^*, p) = 0
\]
\[
g(f^*) \leq 0
\]

Where:

- **h** ➔ Balance Equations
- **g** ➔ Friction Cone inequalities
- **f** ➔ Contact Force Distribution (decision variables)
- **p** ➔ System Parameters (**contact points, wrist position/orientation**) considered **constant**
KKT First Order Necessary Conditions

In a local minimum of F, the Karush-Kuhn-Tucker (KKT) conditions hold:

$$
\nabla_f F(f^*) + \lambda^*^T \nabla_f h(f^*, p) + \mu^*^T \nabla_f g(f^*) = 0
$$

$$
h(f^*, p) = 0
$$

$$
g(f^*) \leq 0
$$

$$
\mu^*^T g(f^*) = 0
$$

$$
\mu^* \geq 0
$$

Where:

$\lambda^* \rightarrow$ Lagrange Multipliers for the equality constraints

$\mu^* \rightarrow$ Lagrange Multipliers for the inequality constraints

System parameters considered constant \rightarrow also a local minimum for the combined quality metric

$$
z(f, p) = w_1 \cdot F(f) + w_2 \cdot \frac{1}{M(p)} + w_3 \cdot Q(p)
$$

wrt $f \rightarrow$ KKT hold for z as well.
Deriving the Directions of Grasp Improvement I

Through total differentiation of the KKT conditions for the objective function z, we can demand that the KKT conditions continue to hold after small perturbations dp of the parameters:

\[
(\nabla_f z(f^*, p))^T \, df + (\nabla_p z(f^*, p))^T \, dp - dz = 0
\]

\[
\left(\nabla_{ff} z(f^*, p) + \sum_{j=1}^{n_c} \mu^*_j \nabla_{fj} g_j(f^*, p) \right) \, df
\]

\[
+ \sum_{k=1}^{6} \lambda^*_k \nabla_{fp} h_k(f^*, p) \, dp + \nabla_f h(f^*, p) \, d\lambda
\]

\[
+ \nabla_f g(f^*, p) \, d\mu = 0_{3n_c}
\]

\[
(\nabla_f h(f^*, p))^T \, df + \nabla_p h(f^*, p)^T \, dp = 0_6
\]

\[
(\nabla_f g(f^*)^T \, df = 0_{nc}
\]
Deriving the Directions of Grasp Improvement II

We rewrite the equations in matrix form as:

\[
\begin{bmatrix}
 \frac{df}{dp} & \frac{df}{d\lambda} & \frac{df}{d\mu} & \frac{df}{dz} \\
 \frac{d\lambda}{dp} & \frac{d\lambda}{d\lambda} & \frac{d\lambda}{d\mu} & \frac{d\lambda}{dz} \\
 \frac{d\mu}{dp} & \frac{d\mu}{d\lambda} & \frac{d\mu}{d\mu} & \frac{d\mu}{dz} \\
 \frac{dz}{dp} & \frac{dz}{d\lambda} & \frac{dz}{d\mu} & \frac{dz}{dz}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 z_f \\
 z_{ff} + \sum_{j=1}^{n_c} \mu_j^* g_{ff} \\
 \beta^T_f h_f \\
 \gamma_f g_f
\end{bmatrix}
\begin{bmatrix}
 \frac{dp}{dp} & 0 & 0 & 0 \\
 \frac{d\lambda}{dp} & 0 & 0 & 0 \\
 \frac{d\mu}{dp} & 0 & 0 & 0 \\
 \frac{dz}{dp} & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\end{bmatrix}
\]

and separate the components associated with the system parameters \(p \) from the other components \((f, \lambda, \mu, z)\) as:

\[
U^{-1} S = 0
\]

Partial Differentiation of both sides wrt \(p \)

Inversion of \(U \)

\[
D = \begin{bmatrix}
\end{bmatrix} = \begin{bmatrix}
\end{bmatrix}
\]

Step that minimizes \(z \)

\[
1^{st} \text{ order approximation of the new values}
\]

C. Mavrogiannis, C. Bechlioulis and K. Kyriakopoulos
Introduction

Problem Formulation

The Sequential Grasp Improvement (SGI) Algorithm

Simulation Results

Discussion
Sequential Grasp Improvement (SGI) Algorithm

Start

Initialization: Grasping Force Optimization

Calculation of Sensitivities (f, λ, μ, z)

Step Determination (dp)

First Order Approximation of the new values of f^*,λ^*,μ^*,z^*

Hand Movement

- Feasible Configuration
- No Fingers Collision
- Grasp Improvement “Significant”

End

C. Mavrogiannis, C. Bechlioulis and K. Kyriakopoulos
Outline

- Introduction
- Problem Formulation
- The Sequential Grasp Improvement (SGI) Algorithm
- Simulation Results
- Discussion
The DLR/HIT II five-fingered robot hand: 5 identical fingers, 15 DOFs in total.
Simulation Results: Cylindrical Object

Cylinder (diameter 6 cm, height 15 cm, weight 200 gr) | Friction Coefficient at the contacts: \(\mu = 0.8 \)

The initial and the final hand configuration as well as the contact points and wrist transitions.

Grasp Quality: Comparative illustration of the cost function components.

C. Mavrogiannis, C. Bechlioulis and K. Kyriakopoulos
Simulation Results: Spherical Object

The initial and the final hand configuration as well as the contact points and wrist transitions.

Comparative illustration of the cost function components.

Sphere (diameter 4 cm, weight 200 gr) | Friction Coefficient at the contacts: $\mu=0.8$

C. Mavrogiannis, C. Bechlioulis and K. Kyriakopoulos
Simulation Results: Video Example
Outline

- Introduction
- Problem Formulation
- The Sequential Grasp Improvement (SGI) Algorithm
- Simulation Results
- Discussion
Discussion

Contributions

- General Framework for on-line improving the Grasp Quality.
- Only requires local information of the object surface (around the contacts)→ can be acquired by a tactile/force/vision sensor suite → Generalization for objects of unknown geometry.
- Simulation verification for a real multifingered robot hand (DLR/HIT II).
- Confrontation of mechanical and geometrical constraints, imposed by the hand and the object.
- Low Complexity (1 matrix inversion per loop).

Future Work

- Experimental Verification of the Algorithm with the DLR/HIT II.
Acknowledgements

This work was partially supported by the European Commission with the Integrated Project no. 248587, THE Hand Embodied, within the FP7-ICT-2009-4-2-1 program Cognitive Systems and Robotics.
Thank You !
Related Work

Grasp Quality Optimization:
Many different approaches, criteria and algorithms.

Sensitivity Analysis:

• Adelman et al. – “Selecting step sizes in sensitivity analysis by finite differences”, National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1985